디시인사이드 갤러리

갤러리 이슈박스, 최근방문 갤러리

갤러리 본문 영역

장기 갤러리 악성 댓글 유저들 비판모바일에서 작성

무한도약갤로그로 이동합니다. 2024.11.24 12:42:12
조회 30 추천 0 댓글 2

김동학 프로9단(이하 '김동학')과 카장9단이 양사 접장기(김동학이 양사를 접는 쪽)를 두었을 때 누가 이길 확률이 더 높을까요?
확률의 정의:각 경우가 일어날 가능성이 모두 같은 어떤 실험이나 관찰을 여러 번 반복할 때, 어떤 사건이 일어나는 상대도수가 일정한 값에 가까워지면 이 일정한 값에 가까워지면 이 일정한 값은 일어나는 모든 경우의 수에 대한 어떤 사건이 일어나는 경우의 수의 비율과 같고, 이를 그 사건이 일어날 확률이라 한다.
사건 A가 일어날 확률=일어나는 모든 경우의 수 분의 사건 A가 일어나는 경우의 수
양사 접장기에서 김동학이 승리할 확률=일어나는 모든 경우의 수 분의 양사 접장기에서 김동학이 승리하는 사건이 일어나는 경우의 수
양사 접장기에서 카장9단이 승리할 확률=일어나는 모든 경우의 수 분의 카장 9단이 승리하는 사건이 일어나는 경우의 수
김동학이 승리할 확률과 카장9단이 승리할 확률을 비교하기 위해서는 김동학이 승리하는 사건이 일어나는 경우의 수와 카장9단이 승리하는 사건이 일어나는 사건이 일어나는 경우의 수를 비교해야 합니다. 그러기 위해서는 '김동학이 포진 대결에서 우위를 점하는 경우의 수'vs'카장9단이 포진 대결에서 우위를 점하는 사건이 일어나는 경우의 수', '김동학이 중반전투에서 우위를 점하는 사건이 일어나는 경우의 수'vs'카장9단이 중반전투에서 우위를 점하는 사건이 일어나는 경우의 수', '카장 9단이 방송 대국이라는 특수한 환경에 적응하지 못하는 사건이 일어나는 경우의 수'vs'카장 9단이 방송 대국이라는 특수한 환경에 적응하지 못하는 사건이 일어나는 경우의 수' 를 비교해 어떤 사건이 일어나는 경우의 수가 더 큰지를 알아내고, 최종적으로 양사 접장기에서 김동학이 승리할 확률이 높은지 카장9단이 승리할 확률이 높은지 비교하면 됩니다. 접장기에서의 확률을 구하기 위해 먼저 맞장기에서의 확률을 먼저 구한 뒤, 접장기라는 조건을 추가해보겠습니다.
결론부터 말씀드리자면, 맞장기에서 '김동학이 포진 대결에서 우위를 점하는 사건이 일어나는 경우의 수'='카장9단이 포진 대결에서 우위를 점하는 사것이 일어나는 경우의 수'
'김동학이 중반전투에서 우위를 점하는 사건이 일어나는 경우의 수'='카장9단이 중반전투에서 우위를 점하는 사건이 일어나는 경우의 수
'카장9단이 방송 대국이라는 특수한 환경에 적응하지 못하는 사건이 일어나는 경우의 수'='카장9단이 방송 대국이라는 특수한 환경에 적응하는 사건이 일어나는 경우의 수' 입니다.
먼저, '김동학이 포진 대결에서 우위를 점하는 사건이 일어나는 경우의 수'='카장9단이 포진 대결에서 우위를 점하는 사건이 일어나는 경우의 수' 인 근거를 설명하겠습니다.
예를 들어, 김동학이 A포진을 두었을 때, 카장9단이 A포진에 대한 공략법을 연구해 와 포진 대결에서 우위를 점하는 사건이 일어나는 경우의 수가 있고, 그러지 못하고 포진 대결에서 김동학이 우위를 점하는 사건이 일어나는 경우의 수가 있습니다. 김동학이 B포진을 두었을 때, 카장9단이 B포진에 대한 공략법을 연구해 와 포진 대결에서 카장9단이 우위를 점하는 사건이 일어나는 경우의 수가 있고, 그러지 못해 포진 대결에서 김동학이 우위를 점하는 사건이 일어나는 경우의 수가 있습니다. 반대로 카장9단이 A포진을 두었을 때, 김동학이 A포진을 공략해 포진 대결에서 우위를 점하는 사건이 일어나는 경우의 수가 있고, 그 반대의 사건이 일어나는 경우의 수도 있습니다.
이 예시들을 포함해서, 김동학vs카장9단이 포진 대결을 할 때 김동학이 우위를 점하는 사건이 일어나는 경우의 수와 카장9단이 우위를 점하는 사건이 일어나는 경우의 수가 셀 수 없이 많습니다. 김동학vs카장9단 포진 대결에서 '김동학이 이긴다' 라는 사건이 일어나게 하는 경우의 수가 A, B, C, ...,Z까지 있다고 가정한다면, 그와 반대되는 사건이 일어나는 경우의 수, 즉 '카장9단이 이긴다' 라는 사건이 일어나게 하는 경우의 수가 a, b, c, ...,z만큼 존재합니다. 포진 대결에서 '김동학이 이긴다' 라는 사건이 일어나게 하는 경우의 수만큼 '카장9단이 이긴다' 라는 사건이 일어나게 하는 경우의 수가 있습니다.
예를 들어, 포진 대결에서 '김동학이 이긴다' 라는 사건이 일어나게 하는 경우의 수가 1만이라고 한다면, 포진 대결에서 '카장9단이 이긴다' 라는 사건이 일어나게 하는 경우의 수가 1만입니다.
포진 대결에서 '김동학이 이긴다' 라는 사건이 일어나게 하는 경우의 수가 1억가지라면, 그에 반대되는 사건이 일어나게 하는 경우의 수 역시 1억가지입니다.
다시 한 번 예시를 든다면, 김동학이 C포진을 두었을 때, C포진으로 김동학이 이기는 사건이 일어나게 하는 경우의 수도 있고, 그 포진을 공략해 카장9단이 이기는 사건이 일어나는 경우의 수도 있습니다. 이런 식으로 계속 가다 보면, 김동학이 1억 번째 포진을 두었을 때 그 1억번째 포진을 통해 카장9단과의 포진 대결에서 승리하는 사건이 일어나는 경우의 수도 있고, 카장9단이 그 포진을 공략해 포진 대결에서       승리하는 사건이 일어나게 하는 경우의 수, 즉 반대의 사건이 일어나게 하는 경우의 수가 반드시 존재한다는 것입니다. 다시 말해, 김동학이 n번째 포진을 두었을 때 김동학이 n번째 포진을 통해 포진 대결에서 승리하는 사건이 일어나게 하는 경우의 수가 있다면 그에 반대되는 사건이 일어나게 하는 경우의 수, 즉 카장9단이 포진 대결에서 승리하는 사건이 일어나게 하는 경우의 수가 반드시 존재합니다. 카장9단이 n번째 포진을 두었을 때 카장9단이 n번째 포진을 통해 포진 대결에서 승리하는 사건이 일어나게 하는 경우의 수가 있다면 그에 반대되는 사건이 일어나게 하는 경우의 수, 즉 김동학이 포진 대결에서 승리하는 사건이 일어나게 하는 경우의 수가 반드시 존재합니다. 이 원리를 통해서 김동학vs카장9단의 포진 대결에서 '김동학이 이긴다' 라는 사건이 일어나게 하는 개별적인 경우의 수가 있을 때 그와 반대되는 사건이 일어나게 하는 경우의 수가 반드시 존재한다.
'김동학이 포진 대결에서 이긴다' 라는 사건이 일어나게 하는 개별적인 경우의 수와 '카장9단이 포진 대결에서 이긴다' 라는 사건이 일어나게 하는 개별적인 경우의 수는 1:1로 대응된다. '김동학이 포진 대결에서 이긴다' 라는 사건이 일어나게 하는 모든 경우의 수:카장9단이 포진 대결에서 이긴다' 라는 사건이 일어나게 하는 모든 경우의 수 의 대응비는 1:1이다.
의 결론을 낼 수 있습니다. 이는 귀납을 통해 이끌어낸 결론입니다.
귀납의 정의:개별적이고 특수한 사실이나 원리로부터 일반적이고 보편적인 명제나 법칙을 이끌어 내는 논증 방법
김동학이 1번째 포진을 두었을 때, 포진 대결에서 이기는 사건이 일어나게 하는 경우의 수:지는 사건이 일어나게 하는 경우의 수 의 대응비는 1:1이다.
김동학이 2번째 포진을 두었을 때, 포진 대결에서 이기는 사건이 일어나게 하는 경우의 수:지는 사건이 일어나게 하는 경우의 수 의 대응비는 1:1이다.
김동학이 3번째 포진을 두었을 때, 포진 대결에서 이기는 사건이 일어나게 하는 경우의 수:지는 사건이 일어나게 하는 경우의 수 의 대응비는 1:1이다.
김동학이 n번째 포진을 두었을 때, 포진 대결에서 이기는 사건이 일어나게 하는 경우의 수:지는 사건이 일어나게 하는 경우의 수 의 대응비는 1:1이다.
결론: 포진 대결에서 김동학이 이기는 사건이 일어나게 하는 경우의 수=카장9단이 이기는 사건이 일어나게 하는 경우의 수 입니다.
중반전투에서 김동학이 이기는 사건이 일어나게 하는 경우의 수와 중반전투에서 카장9단이 이기는 사건이 일어나게 하는 경우의 수를 비교해보겠습니다. 포진 대결에서의 경우의 수 비교에 비해 간단하게 설명이 가능합니다.
먼저, 장기판에서 일어날 수 있는 경우의 수는 셀 수 없이 많습니다. 따라서 김동학vs카장9단 의 중반전투에서 일어날 수 있는 경우의 수는 셀 수 없이 많습니다. '중반전투에서 김동학이 이긴다' 라는 사건이 일어나게 하는 경우의 수는 셀 수 없이 많고, '중반전투에서 카장9단이 이긴다' 라는 사건이 일어나게 하는 경우의 수 또한 셀 수 없이 많습니다.
중반전투에서 김동학이 이기는 사건이 일어나게 하는 경우의 수:카장9단이 이기는 사건이 일어나게 하는 경우의 수=셀 수 없이 많은 수:셀 수 없이 많은 수
따라서 대응비는 1:1입니다.
결론:중반전투에서 김동학이 이기는 사건이 일어나게 하는 경우의 수=중반전투에서 카장9단이 이기는 사건이 일어나게 하는 경우의 수 입니다.
마지막으로 카장9단이 방송 대국이라는 환경의 변수에 대처하지 못하는 사건이 일어나는 경우의 수와 카장9단이 방송 대국이라는 환경에 대처하는 사건이 일어나는 경우의 수를 비교해보겠습니다. '포진 대결에서 일어나는 경우의 수 비교' 와 비슷하게 접근 가능합니다. 예를 들어, 방송 대국에서의 변수 A가 있다고 할 때 카장 9단이 방송 대국에서의 변수 A에 대처하지 못하는 사건이 일어나게 하는 경우의 수 A가 있다고 하겠습니다. 이때 그와 반대되는 경우의 수(카장9단이 방송 대국에서의 변수 A에 대처하는 사건이 일어나게 하는 경우의 수 a가 반드시 있습니다. 방송 대국에서의 변수 B에 카장9단이 대처하지 못하는 경우의 수 B가 있다고 한다면, 대처하는 경우의 수 b가 반드시 있습니다. 이 두가지 예시를 포함해서 카장9단이 방송 대국이라는 환경에 대처하지 못하는 사건이 일어나는 경우의 수와 카장9단이 방송 대국이라는 환경에 대처하는 사건이 일어나는 경우의 수는 모두 정말 많습니다. 카장9단이 방송 대국이라는 환경의 변수에 대처하지 못한다는 사건이 일어나게 하는 경우의 수가 A, B, C, ..., Z가 있다고 한다면 그와 반대되는 사건이 일어나는 경우의 수, 즉 카장9단이 방송 대국에서의 변수에 대처하는 사건이 일어나는 경우의 수 a, b, c, ..., z가 존재합니다.카장9단이 방송 대국에서의 변수에 대처하지 못하는 사건이 일어나는 경우의 수만큼 카장9단이 방송 대국에서의 변수에 대처하는 사건이 일어나는 경우의 수가 있습니다.
예를 들어, 카장9단이 방송 대국에서의 변수에 대처하지 못하는 사건이 일어나게 하는 경우의 수가 1만이라고 한다면, 카장9단이 방송 대국에서의 변수에 대처하는 사건이 일어나는 경우의 수가 1만입니다.
카장9단이 방송 대국에서의 변수에 대처하지 못하는 사건이 일어나게 하는 경우의 수가 1억이라고 한다면, 그에 반대되는 사건이 일어나게 하는 경우의 수 역시 1억입니다.
다시 한 번 예시를 든다면, 카장9단이 방송 대국에서의 변수 C에 대처하지 못하는 사건이 일어나는 경우의 수 C가 있다고 하면, 카장9단이 방송 대국이라는 변수 C에 대처하는 사건이 일어나는 경우의 수 c가 반드시 있습니다. 계속 가다 보면 카장 9단이 방송 대국에서의 1억번째 변수에 대처하지 못하는 경우의 수가 있다고 하면 카장9단이 방송 대국에서의 1억번째 변수에 대처하는 사건이 일어나는 경우의 수, 즉 반대의 경우의 수가 반드시 존재한다는 것입니다. 카장9단이 방송 대국에서의 n번째 변수에 대처하지 못하는 사건이 일어나는 경우의 수가 있다고 하면, 그에 반대되는 사건이 일어나는 경우의 수가 반드시 있습니다.
이 원리를 통해서 "카장9단이 방송 대국에서의 변수에 대처하지 못하는 사건이 일어나게 하는 경우의 수가 있다고 하면 그와 반대되는 사건이 일어나게 하는 경우의 수는 반드시 존재한다."
"카장9단이 방송 대국에서의 변수에 대처하지 못하는 사건이 일어나는 개별적인 경우의 수와 카장9단이 방송 대국에서의 변수에 대처하는 사건이 일어나는 개별적인 경우의 수는 1:1로 대응된다."
의 결론을 이끌어낼 수 있습니다.
카장9단이 방송 대국에서의 1번째 변수에 대처하지 못하는 사건이 일어나는 경우의 수:대처하는 사건이 일어나는 경우의 수는 1:1이다.
카장9단이 방송 대국에서의 2번째 변수에 대처하지 못하는 사건이 일어나는 경우의 수:대처하는 사건이 일어나는 경우의 수는 1:1이다.
카장9단이 방송 대국에서의 3번째 변수에 대처하지 못하는 사건이 일어나는 경우의 수:대처하는 사건이 일어나는 경우의 수는 1:1이다.
카장9단이 방송 대국에서의 n번째 변수에 대처하지 못하는 사건이 일어나는 경우의 수:대처하는 사건이 일어나는 경우의 수는 1:1이다.
귀납을 통해 이끌어낸 결론:카장9단이 방송 대국에서의 변수의 대처하지 못하는 사건이 일어나는 하는 경우의 수:대처하는 사건이 일어나는 경우의 수=1:1
맞장기를 기준으로 할 때 김동학이 포진 대결에서 이긴다는 사건이 일어나게 하는 경우의 수는 카장9단이 포진 대결에서 이긴다는 사건이 일어나게 하는 경우의 수와 같습니다. 김동학이 중반 전투에서 이긴다는 사건이 일어나게 하는 경우의 수는 카장9단이 중반 전투에서 이긴다는 사건이 일어나게 하는 경우의 수와 같다. 카장9단이 방송 대국에서의 변수에 대처하지 못하는 사건이 일어나게 하는 경우의 수는 카장9단이 방송 대국에서의 변수에 대처한다는 사건이 일어나게 하는 경우에 수와 같습니다.
이를 종합해서 볼 때 맞장기에서 김동학이 이긴다는 사건이 일어나게 하는 경우의 수는 카장9단이 카장9단이 이긴다는 사건이 일어나게 하는 경우의 수와 같습니다.
사건 A가 일어날 확률=일어나는 모든 경우의 수 분의 사건 A가 일어나는 경우의 수 이고, 김동학이 이길 확률=일어나는 모든 경우의 수 분의 김동학이 이기는 사건이 일어나게 하는 경우의 수카장9단이 이길 확률=일어나는 모든 경우의 수 분의 카장9단이 이기는 사건이 일어나게 하는 경우의 수 입니다.
여기서 '일어나는 모든 경우의 수' 란 김동학이 이기는 사건이 일어나게 하는 모든 경우의 수+카장9단이 이기는 사건이 일어나게 하는 모든 경우의 수입니다.
따라서 맞장기에서 김동학이 이기는 사건이 일어나는 확률과 카장9단이 이기는 사건이 일어나는 확률을 비교하려면 김동학이 이기는 사건이 일어나게 하는 경우의 수와 카장9단이 이기는 사건이 일어나게 하는 경우의 수를 비교하면 되는데, 맞장기에서 김동학이 이기는 사건이 일어나게 하는 경우의 수=카장9단이 이기는 사건이 일어나게 하는 경우의 수 이므로 맞장기에서 김동학이 이기는 사건이 일어나는 확률과 카장9단이 이기는 사건이 일어나는 확률은 서로 같습니다.
글의 처음 계획에서 접장기에서의 확률을 구하기 위해 먼저 맞장기에서의 확률을 먼저 구한 뒤, 접장기라는 조건을 추가해보겠다고 했습니다. 맞장기에서의 확률을 구했으니, 접장기라는 조건을 추가해서 양사 접장기에서 김동학이 승리할 확률이 높을지 카장9단이 승리할 확률이 높을지 구해보겠습니다. '접장기' 라는 조건은 기물을 접는 쪽의 반대쪽이 유리합니다. 접장기를 둘 때, 어느 쪽이 유리한가? 라는 질문에 대한 결론을 낼 때, 그 과정에서 서로 비슷한 수준의 수를 둔다 는 가정을 해야 합니다. 서로 다른 수준의 수를 두었을 때를 가정하면 안됩니다. 극단적인 예로 차접장기를 둔다는 가정을 해봅시다. 차를 접는 쪽이 차를 접는 쪽의 반대쪽보다 더 나은 수를 두었을 때를 가정했을 때 차를 접는 쪽이 대국에서 이기는 사건이 일어날 수 있습니다. 그렇다고 해서 "차접장기는 차를 접는 쪽이 유리하다." 라는 결론을 낼 수 없습니다. 서로 다른 수준의 수를 두었을 때를 가정했기 때문입니다. 서로 비슷한 수준의 수를 두었을 때 차를 접는 쪽의 반대쪽이 유리합니다. 양사접장기도 마찬가지입니다. 서로 비슷한 수준의 수를 두었을 때 양사를 접는 쪽의 반대쪽이 유리합니다. 현실에서 일어날 수는 없지만, 서로 실수 없이 두었다고 가정했을 때 양사를 접는 쪽의 반대쪽이 무조건 유리하다는 뜻입니다. 맞장기를 기준으로 하면 김동학이 승리할 확률=카장9단이 승리할 확률 이고, 양사접장기에서 양사를 접는 반대쪽이 유리하기 때문에 '양사접장기' 라는 조건이 추가된다면 그 조건은 양사를 접는 반대쪽에 유리하게 작용하기 때문에 양사접장기(김동학이 양사를 접는 쪽)에서 양사를 접는 반대쪽인 카장9단이 승리하는 사건이 일어날 확률이 김동학이 승리할 사건이 일어날 확률보다 더 높다는 것입니다.
사람 vs stockfish 의 경우는 그와 다릅니다. 같은 논리를 적용해 확률을 구할 수 없다는 것입니다. 예시로 최상위 프로기사 vs stockfish 의 경기에서 stockfish 가 차를 접고 둔다고 해도 최상위 프로기사가 승리할 확률이 더 높은 것이 아닙니다. 근거는 앞에서 설명했는데, 일반인vs최상위 프로기사 에서 일반인이 더 나은 수를 둘 확률과 최상위 프로기사가 더 나은 수를 둘 확률은 같습니다. 최상위 프로기사 vs stockfish 에서 stockfish가 무조건 최상위 프로기사보다 더 나은 수를 둡니다. '완벽한 수' 가 무엇인지 확실하게 정의되지 않은데다 장기를 비롯한 보드게임에서 '완벽한 수' 라는 것이 과연 있을지도 의문입니다. 2020년대 stockfish가 두는 수를 '완벽한 수' 라고 정의할 수 있을지도 의문입니다. 그것까지 설명하면 너무나도 글이 복잡해지니 이 글에서는 stockfish가 두는 수를 '완벽한 수' 라고 해보겠습니다. stockfish는 항상 완벽한 수를 둡니다. 사람은 아무리 장기를 잘 두더라도 항상 완벽한 수를 둘 수 없습니다. 따라서 인간은 stockfish보다 나은 수를 절대 둘 수 없습니다. 이것이 최상위 프로기사 vs stockfish 에서 stockfish가 차를 접고 둔다고 하더라도 최상위 프로기사가 이길 확률이 더 높지 않은 근거입니다. 정리하자면 stockfish는 무조건 사람보다 나은 수를 두어서 stockfish vs 최상위 프로기사가 접장기를 두어도 stockfish가 승리할 확률이 더 높거나 인간이 승리할 확률이 더 높지 않을 수 있지만, 일반인vs최상위 프로기사가 접장기를 두었을 때 일반인이 더 나은 수를 둘 확률과 최상위 프로기사가 더 나은 수를 둘 확률은 같고, '접장기' 라는 조건은 기물을 접는 쪽의 반대쪽에 유리한 조건이므로 접장기에서 일반인이 승리할 확률이 최상위 프로기사가 승리할 확률보다 너 높은 것입니다.
이 글을 쓴 목적은, 장기 갤러리에서 일어난 악성 댓글을 비판하기 위해서입니다. 신고 및 처벌 요청의 목적은 없습니다. 이제, 왜 해당 글이 악성 댓글인가를 설명하겠습니다. 제 글에 달린 댓글은 얼핏 보면 정당한 비판처럼 보이나 저의 말을 공격하는 거의 모든 댓글이 허수아비 공격을 하고 있었습니다. 허수아비 공격이 일어나는 과정은 A가 X를 주장한다. → B가 A의 X를 왜곡, 비약하여 억지로 Y로 바꿔서 언급한다. → B가 Y를 공격한다. → 따라서 X는 거짓이다. 입니다.이 논증이 오류인 이유는, X의 왜곡된 변형인 Y를 부정하는 것으로는 X에 대한 반박을 증명할 수 없기 때문입니다.
실제로 저는 카장9단을 대단한 존재라고 한 적이 전혀 없습니다. 카장 레이팅 2700이 넘는 사용자와 최상위 프로기사의 대결에서 최상위 프로기사가 마를 접고 둔다고 하더라도 최상위 프로기사가 이길 것이라고 생각하는 사람입니다. 그러나  당시 저의 글을 읽은 사람들이 제 말을 "카장9단은 대단한 존재이다." 라고 왜곡한 후 공격했습니다. 이것이 당시 댓글이 악성 댓글인 이유입니다.

추천 비추천

0

고정닉 0

0

댓글 영역

전체 댓글 0
등록순정렬 기준선택
본문 보기

하단 갤러리 리스트 영역

왼쪽 컨텐츠 영역

갤러리 리스트 영역

갤러리 리스트
번호 제목 글쓴이 작성일 조회 추천
설문 손해 보기 싫어서 피해 입으면 반드시 되갚아 줄 것 같은 스타는? 운영자 24/11/18 - -
15464691 북따라라라리딱띠리리 ㅇㅇ(211.235) 15:22 9 1
15464690 로라 치키타 졸커네 ㅋㅋㅋ ㅇㅇ(110.70) 15:22 14 0
15464689 밍주가 젤이뽀잉 ㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋ ㅇㅇ(211.107) 15:22 10 0
15464688 민주뱅킄ㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋ 호컬지갤로그로 이동합니다. 15:22 5 0
15464687 민주야 ㅋㅋㅋㅋㅋㅋㅋㅋㅋ ㅇㅇ(223.62) 15:22 5 0
15464686 아현이 야꼽 ㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋ ㅇㅇ(180.70) 15:22 9 0
15464685 띠따띠라띠따또또따띠따띠라띠따또또따띠따띠라띠따또또따 라여라여갤로그로 이동합니다. 15:22 11 0
15464684 시혁아 이게 노래냐 ㅋㅋㅋ ㅇㅇ(39.7) 15:22 6 0
15464683 (前) 뉴진스 멤버들 오열 ㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋ ㅇㅇ갤로그로 이동합니다. 15:22 12 0
15464682 이게 골그룹와꾸제 ㄹㅇ ㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋ ㅇㅇ(211.107) 15:22 7 0
15464681 원희야 모카야 민주야 ㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋ ㅇㅇ(220.95) 15:22 9 0
15464680 띠따띠라띠따또또따 ㅋㅋㅋㅋㅋㅋ.txt 라여라여갤로그로 이동합니다. 15:22 14 0
15464679 띠따띠라 ㅋ ㅇㅇ(211.36) 15:22 11 0
15464678 이게 걸그룹이지ㅋㅋㅋㅋㅋㅋ ㅇㅇ(118.235) 15:22 8 0
15464677 띠따띠라띠따따도따띠따띠라띠따따도따띠따띠라띠따따도따띠따띠라띠따따도따띠따띠라 호컬지갤로그로 이동합니다. 15:22 9 0
15464676 아일릿으로 눈정화 타임 ㅋㅋㅋㅋㅋㅋㅋㅋㅋ ㅇㅇ(14.44) 15:22 14 0
15464675 라이브야 ㅂㅅ들아 ㅋㅋ ㅇㅇ(110.70) 15:22 14 0
15464674 띠따띠라루 ㅇㅇ(58.143) 15:22 10 0
15464673 띠따띠라띠따따또따 ㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋ ㅇㅇ(211.107) 15:22 11 0
15464672 야일릿 드가자 ㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋ ㅇㅇ(220.95) 15:22 7 0
15464671 모카 ㅅㅂ졸커ㅋㅋㅋㅋㅋㅋ.txt 라여라여갤로그로 이동합니다. 15:22 10 0
15464670 야일릿 입갤ㅋㅋㅋㅋㅋㅋㅋ 오리온자리갤로그로 이동합니다. 15:22 10 0
15464669 야일릿 드개재 ㅋㅋㅋ 야갤러(112.150) 15:22 5 0
15464668 ,.,.,역시 치키타.. 표정이 아주 매력적이야....ㅇㅇ ㅇㅇ(211.198) 15:22 12 0
15464667 상큼해ㅋㅋㅋㅋ ㅇㅇ(211.235) 15:22 8 0
15464665 진짜 골그룹 야일릿 입갤 ㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋ ㅇㅇ(211.107) 15:22 10 0
15464663 로라 ㅇㅇ(223.131) 15:22 9 0
15464662 저 제니 뭐야.txt 라여라여갤로그로 이동합니다. 15:21 17 0
15464661 똥남아년 나댄다 또ㅋㅋㅋㅋㅋ ㅇㅇ(118.235) 15:21 9 0
15464660 촌스런 노래가 4위 ㅇㅇ(211.36) 15:21 9 0
15464659 머하노 ㅋㅋㅋ ㅇㅇ(39.7) 15:21 9 0
15464658 이게 걸그룹이다 ㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋ ㅇㅇ(220.95) 15:21 9 0
15464657 아현이 졸커 ㄹㅇ ㅋㅋ ㅇㅇ(110.70) 15:21 16 0
15464656 에스파 슈퍼노바 이후 패션쇼음악같은 신곡내는 여돌들 ㅇㅇ(39.115) 15:21 25 0
15464655 긴급하게 조수미입갤ㅋㅋㅋㅋ ㅇㅇ(211.235) 15:21 11 0
15464654 립씽크 머고 야갤러(175.113) 15:21 18 1
15464653 3단고음을 아직도 하노ㅋㅋㅋㅋㅋㅋㅋ ㅇㅇ(118.235) 15:21 11 0
15464652 아현아 야꼽 어흐 ㅇㅇ(180.70) 15:21 11 0
15464650 아현 3단고음 ㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋ ㅇㅇ(220.95) 15:21 9 0
15464649 팩트) 베몬은 역대 YG 걸그룹 중 평균 비주얼이 가장 낫다 ㅇㅇ갤로그로 이동합니다. 15:21 19 0
15464648 먼 아지매도있노 ㅋㅋㅋㅋㅋㅋㅋㅋㅋ ㅇㅇ(211.107) 15:21 9 0
15464646 쟤들이 제일 낫네 ㅇㅇ(121.174) 15:21 7 0
15464645 로라가 젤 낫네 ㅇㅇ(118.235) 15:21 10 0
15464644 베몬이 잴이쁘누 ㅋㅋㅋㅋ ㅇㅇ(121.88) 15:21 16 0
15464643 친했던 형님에 300만원빌렸는데 그 도중에 성격차로 헤어짐txt ㅇㅇ(211.36) 15:20 21 0
15464642 역쉬 쉬쉬가 선녀네 야갤러(118.235) 15:20 18 0
15464641 라미는 YG의 가을 선배야 ㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋ ㅇㅇ갤로그로 이동합니다. 15:20 10 0
15464640 루카 렙 ㄷㄷㄷ ㅇㅇ(121.88) 15:20 13 0
15464639 어흐 아현아 ㅇㅇ(180.70) 15:20 9 0
15464638 대기업인데 와꾸가 좆소급이노 ㅋㅋㅋㅋㅋㅋ ㅇㅇ(211.107) 15:20 10 0
뉴스 BTS '낫 투데이' MV 유튜브 6억뷰 돌파…팀 통산 14번째 디시트렌드 10:00
갤러리 내부 검색
제목+내용게시물 정렬 옵션

오른쪽 컨텐츠 영역

실시간 베스트

1/8

뉴스

디시미디어

디시이슈

1/2