갤러리 이슈박스, 최근방문 갤러리
연관 갤러리
로드 투 드래곤 갤러리 타 갤러리(0)
이 갤러리가 연관 갤러리로 추가한 갤러리
0/0
타 갤러리 로드 투 드래곤 갤러리(0)
이 갤러리를 연관 갤러리로 추가한 갤러리
0/0
개념글 리스트
1/3
- 마이너리거 시절 추신수 아내의 헌신적인 내조 ㅇㅇ
- JYP 미국걸그룹 백인멤버 탈퇴소송건거 진짜 상세함... ㅇㅇ
- 윤상현, 국민은 개돼지 입갤 ㅇㅇ
- [단독] 임영웅 발언 여파···포천시도 진위여부 확인 중 ㅇㅇ
- 싱글벙글 특이한 핸드드라이어.JPG 최강한화이글스
- [속보] 공수처장 "윤 대통령 출국금지 지시" ㅇㅇ
- 휴민트 283 : 수업 거부 효과 있다고 하네요~ (feat. 조교) 휴민트솜솜이
- 싱글벙글 에드워드 리가 생각하는 한식의 정의.jpg 최강한화이글스
- 스윗한 포티신들 여초 반응을 본 딴지 ㅋㅋㅋ ㅇㅇ
- 민주당 "모든 장관 탄핵" ㅋㅋㅋㅋㅋ ㅇㅇ
- AGF 양일 갔다옴 밐 데이드 (사진많음/갤주사진) 방배동
- 감독에게 수건으로 맞았다는 농구선수의 수상한 대학생활 ㅇㅇ
- 화남화남 여자를 맞춰 주기만 했을때 나타는 현상 아카식레코드
- 서해 놀러갔다가 실제 총 발견한 썰.jpg 섬마을대머리
- 이재명 국보법 위반으로 고발 ㅇㅇ
o1 pro에게 대학생 수학경시대회 풀게 하기
대수경 = 대학생 수학경시대회kmo 등의 수학경시대회는 보통 고등학생 이상까지만 (즉, 대학 수학을 배우지 않은 사람만) 참가가 가능한데 대수경은대학 수학 교육을 받은 사람들을 대상으로 하는 수학 경시대회kmo 등 중등 수학경시대회보다 더 어려울 거라고 생각하기 쉽지만 사실은 중등교육과정이랑 고등교육과정을 둘 다 비슷한 정도로 알고 있다는 가정 하에 더 높은 지적 능력을 요구하지는 않고, 보통 2-3문제 정도만이 발상적으로 어려운 문제가 출제되긴 함그래도 역시 대한수학회에서 수학 교수님들이 출제하는 문제인 만큼 퀄리티는 좋고 수학 능력을 평가하기 좋음2023년도 문제---------------------------------------------------------------------1번은 극좌표에서 적분으로 넓이 구하는 문제고, 미적분학 같은 데에 연습문제 정도로 나올 만한 문제임과학고 학생들은 2-3학년 때 배우고, 이공계 대학교 1학년에서 배울 정도로 쉬운 문제1번 : 정답 (2분 25초)--------------------------------------------------------------------2번은 간단한 개념 문제그냥 고윳값과 고유벡터 정의만 알면 풀 수 있는 문제고, T^2 (A) = A 인 거 이용해서 characteristic polynomial 로 서술해도 됨2번 : 정답 (38초)----------------------------------------------------------------------3번은 계산 문제로, theta'(t) 를 계산해서 부호만 판별하면 됨3번 : 정답 -------------------------------------------------------------------------------4번은 정수를 어떤 정수들의 합으로 표현하는 방법의 수에 관한 조합론 문제언뜻 봐서는 뭔가 점화식 같은 걸 이용할 것 같지만, 사실은 생성함수를 이용해서 구할 수 있다는 방법이 알려진신기한 문제임이 문제처럼 n을 {1, 2, 4, 8, ...}의 원소들의 합으로 나타내는 방법의 수를 구할 때(1 + x + x^2 + x^3)(1 + x^2 + x^4 + x^6)(1 + x^4 + x^8 + x^12)...라는 식을 전개해서 x^n 의 계수를 보면 된다는 뜻생성함수 발상해낸 것까지는 좋았는데, 처음엔 답을 이렇게 적었길래 더 간단한 형태로 표현할 수 있는 방법을 찾아보라고 함이후 생성함수 변형한 식에서의 x^n의 계수는 i + 2j = n 을 만족하는 (i, j) 순서쌍의 개수라는 걸 알아내서 정답이미 좀 알려진 테크닉이긴 하지만, 처음에 답을 저렇게 쓰고 이후에 고친 걸 보면 풀이를 어디서 그대로 베껴온 게 아니라스스로 발상해냈다고 봐야 하지 않을까 싶음4번 : 정답 ---------------------------------------------------------------5번선형대수학 eigenvalue 관련 문제(1)번은 이미 잘 알려진 정리이고, (2)번은 그걸 응용해서 증명하는 문제근데 이새기 왜 갑자기 영어로 대답함?(2)번 증명할 때 처음에 증명에 오류 있길래 다시 하라고 함두 번째 시도에서는 (BA-I)^2 = 2(BA-AB) 로 변형하고, trace=(eigenvalue의 합) 까지 생각한 건 좋았는데,eigenvalue 제곱합을 구할 때 eigenvalue가 복소수일 수도 있는데 이게 항상 0 이상이라고 생각해버림.(켤레복소수끼리 제곱합을 구해도 0보다 작을 수 있음)대충 읽으면 맞다고 생각할 수도 있지만 틀린 내용이고, 실제로 이 논증과정이 올바르지 않다는 반례 행렬을 찾을 수도 있음.아무튼 아직까지는 이 정도 깊이(수학과 학부 과정) 에서 발생하는 환각은 내부 검증 과정에서 놓치는 듯함이후 힌트 주면서 다시 시도해봤는데도 실패5번 : 오답 (증명 과정에서 오류)-------------------------------------------------------------------------------------------------6번은 정수론 문제로, 식이 좀 복잡해 보이지만 사실은(2023과 서로소인 수 x) x (2023과 서로소인 수 y) = (2023과 서로소인 수)가 된다는 것과, x가 고정돼있을 때 y를 변화시켜가면서 더하면 결국 우변은 2023과 서로소인 수가 전부 한번씩 나온다는 걸 이용하면 쉽게 풀 수 있음그리고 그걸 잘 캐치해내고 식까지 완벽하게 쓴 후 합을 잘 구함. (채점자가 누구라도 만점을 줄 수준)그냥 패턴을 파악해서 푼 거 아니냐? 라고 하면 그건 그렇지만,이 정도 응용문제에서 만약 인간이 수식까지 완벽하게 쓰고 계산실수 없이 답을 잘 구해냈다면누구라도 그 인간 보고 "잘 이해했구나."라고 할 거임.이걸 1트만에 잘 풀었다는 건 언어모델임에도 신기하게 이런 수학적 지식들을 잘 "이해하고 있다"는 뜻6번 : 정답 (1분 19초)------------------------------------------------------------------------------7번은 맨 위 사진에 나와있지는 않은데 이 문제양변에 로그를 씌우든 네제곱을 하든 변형해서 테일러전개식을 쓴 후에, 복잡한 계산과정과 수학적 귀납법 등을 동원해서 a_n이 음이 아닌 정수임을 보여야 하는 문제언뜻 보기는 쉬워보이는데 괜히 7번 문제가 아니듯이 계산과정이 꽤 복잡하고 중간에 수학적 귀납법에서 귀납가정도 잘 써야함.처음에는 a_n 을 그냥 막무가내로 계산 노가다로 구하려고 하다가,좀 복잡한 식 나오니까 "음 이건 자명하진 않은데 보통 이런 합 구하다보면 전부 다 날라가서 정수됨ㅇㅇ" 이 ㅈㄹ 하고 앉았음ㅋㅋㅋ좀 더 엄밀히 계산하고 계산과정 보여달라고 말하니까 접근 방향 바꿔서 잘 쓰긴 하더라근데 이후에도 점화식은 잘 썼는데 계산 과정 틀리고 논리 전개도 틀리길래 한 3번 정도 바로 잡아줌4트째에 성공7번 : 정답 (4분 8초, 4트)------------------------------------------------------------------결과 : 7문제 중 5문제 1트만에 정답, 가장 어려운 7번 4트째에 제대로 풀어냄결론 : 아직 계산 말고 증명 같은 부분에서 조금 복잡해지면 논리 전개에서 실수를 보일 때가 있음특히 부호 판별을 좀 헷갈려 하는 것 같고, 내 생각엔 "그럴 듯한" 증명을 써놓으면 검증 모델이 제대로 검증을 못 해서못 걸러내는 게 아닐까 싶음그래도 수능~대수경 수준까지의 문제들은 어느 정도 잘 푸는 것 같고,진짜 창의적인 발상이나 복잡한 사고를 필요로 하는 IMO나 Putnam 급은 아직 무리가 있지 않나 싶음그래도 4o 나온지 반년, o1-preview 나온지 3개월 정도만에 이 정도면 정말 성장속도가 말이 안된다고 생각함갠적으로 AlphaGeometry 가지고도 한번 테스트해보고 싶은데 걔는 자연어가 안 돼서 너무 피곤하더라...
작성자 : AMI고정닉
싱글벙글 틱톡때문에 선거가 무효된 나라.tiktok
그건 바로 '루마니아'임2024년 12월 6일에 대선 1차투표 결과를 전부 무효화하고 다시 대선을 열겠다는 결정을 내렸는대(참고로 루마니아는 대선이 1차투표로 예선 거치고 다시 결선투표를 하는 방식임)그 이유를 설명하기에 앞서서11월 24일에 열렸던 1차투표에서 일어난 것부터 알아야 함원래 여론조사에서 5.4퍼따리 개듣보 친러시아(<-여기서부터 이미 수상함ㅋㅋ) 후보가1차 투표에서 갑자기 23퍼를 쳐먹으면서 득표율 1위를 차지함아무리 여론조사가 정확하지 않을 수 있다고해도친러시아 후보가 갑자기 지지율 4배나 표를 받았다?ㄹㅇ 흔치 않은 일임그래서 지금 정부도 "이게 말이 되나??" 싶어서 조사를 해봣고,그 결과 러시아가 틱톡이랑 텔레그램으로 미디어 조작을 '공격적'으로 했다는 조사결과가 나왔는대그걸 일단은 비공개로 하고있다가 12월 4일에 기밀 해제함결국 루마니아 헌법재판소에서 다시 선거하라고 결론내림또 웃긴게 이 후보가 자기는 돈 안쓰고 대선운동한다고 '무지출 대선운동'을 아예 컨셉으로 잡았었는대,이 틱톡 홍보에 들어간 어마어마한 자금을 해명하지 못해서거꾸로 제 발목을 잡는 꼴이 되어버렸고돈세탁 혐의 등으로 경찰 조사 들어간다고 하내용https://www.rferl.org/a/romania-russia-election-interference-tiktok/33227010.html Romanian Elections Targeted By 'Aggressive Hybrid Russian Action,' Declassified Documents Show Documents declassified by Romania's top security council on December 4 said the country was the target of an www.rferl.orghttps://www.theguardian.com/world/2024/dec/06/romanian-court-annuls-first-round-of-presidential-election Romanian court annuls first round of presidential election Ruling follows revelation of declassified intelligence alleging Russia ran online campaign to promote far-right outsiderwww.theguardian.com
작성자 : 미나키노고정닉
차단하기
설정을 통해 게시물을 걸러서 볼 수 있습니다.
댓글 영역
획득법
① NFT 발행
작성한 게시물을 NFT로 발행하면 일주일 동안 사용할 수 있습니다. (최초 1회)
② NFT 구매
다른 이용자의 NFT를 구매하면 한 달 동안 사용할 수 있습니다. (구매 시마다 갱신)
사용법
디시콘에서지갑연결시 바로 사용 가능합니다.